19F nuclear magnetic resonance as a probe of the spatial relationship between the heme iron of cytochrome P-450 and its substrate.
نویسندگان
چکیده
The distance between the heme iron of ferrous cytochrome P-450-CAM and a fluorine label attached to the 9-methyl carbon of its substrate, (1R)-(+)-camphor, has been determined using 19F NMR. This investigation uses the Solomon-Bloembergen equation to measure the distance from a paramagnetic heme iron to a fluorine probe incorporated into a substrate that is not in fast exchange. The structural identity of the substrate analogue, 9-fluorocamphor, has been established using one- and two-dimensional NMR methods and mass spectrometry. The relaxation rate of 9-fluorocamphor bound to high-spin paramagnetic ferrous P-450-CAM has been studied at 188, 282, and 376 MHz, and the correlation time has been directly determined from the frequency dependence of the relaxation rate. When the substrate analogue was bound to the low-spin diamagnetic ferrous-CO derivative of the enzyme, the relaxation rate was found to be 100 times slower and was therefore neglected in the distance calculation. The relaxation data for the paramagnetic system and the correlation time have been used to calculate a distance of 3.8 A between the heme iron and the C-9 fluoride. A fit of the distance and the chemical shift data to the pseudocontact shift equation predicts an angle of approximately 52 degrees between the heme normal and the Fe-F vector. The solution state Fe-F distance is somewhat shorter and the angle between the heme normal and the Fe-F vector slightly larger for the substrate-bound ferrous enzyme reported herein than the analogous values for the substrate-bound ferric enzyme determined in the solid state by x-ray crystallography. These differences may reflect a structural change at the substrate-binding site upon reduction of the iron.
منابع مشابه
The Effect of Complexes of the Ferric Hemeprotein on the Relaxation of Solvent Water Protons*
With pulsed nuclear magnetic resonance techniques, the effects of various complexes of f’erric cytochrome P-450 on the relaxation rate of bulk solution water protons have been determined. For the camphor, metyrapone, and 4-phenylimidazole complexes, the experimental results are consistent with outer sphere relaxation effects. However, for the substrate-free enzyme, the magnitude and temperature...
متن کاملPseudomonas putida cytochrome P-450. The effect of complexes of the ferric hemeprotein on the relaxation of solvent water protons.
With pulsed nuclear magnetic resonance techniques, the effects of various complexes of ferric cytochrome P-450 on the relaxation rate of bulk solution water protons have been determined. For the camphor, metyrapone, and 4-phenylimidazole complexes, the experimental results are consistent with outer sphere relaxation effects. However, for the substrate-free enzyme, the magnitude and temperature ...
متن کاملPreferred binding orientations of phenacetin in CYP1A1 and CYP1A2 are associated with isoform-selective metabolism.
Human cytochromes P450 1A1 and 1A2 play important roles in drug metabolism and chemical carcinogenesis. Although these two enzymes share high sequence identity, they display different substrate specificities and inhibitor susceptibilities. In the present studies, we investigated the structural basis for these differences with phenacetin as a probe using a number of complementary approaches, suc...
متن کاملElectron paramagnetic resonance study of the high- and low-spin forms of cytochrome P-450 in liver and in liver microsomes from a methylcholanthrene-treated rabbit.
The high- and low-spin forms of cytochrome P-450 were observed by electron paramagnetic resonance (epr) in a liver slice and in hepatic microsomes from a rabbit injected with methylcholanthrene. Quantitation of the epr absorption of these two chemical species and comparison with a preparation from a control rabbit showed that the single injection of drug increased the concentration of cytochrom...
متن کاملA New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite
Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 264 5 شماره
صفحات -
تاریخ انتشار 1989